Regulation of human tissue transglutaminase function by magnesium-nucleotide complexes. Identification of distinct binding sites for Mg-GTP and Mg-ATP.
نویسندگان
چکیده
Tissue transglutaminase (tTG) catalyzes a Ca(2+)-dependent transglutaminase (TGase) activity that stabilizes tissues and a GTP hydrolysis activity that regulates cell receptor signaling. The purpose of this study was to examine the true substrates for nucleotide hydrolysis and the effects of these substrates on modulating the dual enzymatic activities of tTG. We found that Mg-GTP and Mg-ATP are the true substrates of the hydrolysis reaction. tTG hydrolyzed Mg-GTP and Mg-ATP at similar rates and interacted with Mg-ATP (Km = 38 +/- 10 microM) at a 3-fold greater steady-state affinity than with Mg-GTP (Km = 130 +/- 35 microM). In addition, Mg-ATP inhibited GTP hydrolysis (IC50 = 24 microM), whereas 1 mM Mg-GTP reduced ATP hydrolysis by only 20%. Furthermore, the TGase activity of tTG was inhibited by Mg-GTP, Mg-GDP, and Mg-GMP, with IC50 values of 9, 9, and 400 microM, respectively, whereas the Mg-adenine nucleotides were ineffective. Kinetic analysis of the hydrolysis reaction demonstrates the presence of separate binding sites for Mg-GTP and Mg-ATP. Finally, we found that Mg-GTP protected tTG from proteolytic degradation by trypsin, whereas Mg-ATP was ineffective. In conclusion, we report that Mg-GTP and Mg-ATP can bind to distinct sites and serve as substrates for nucleotide hydrolysis. Furthermore, binding of Mg-GTP causes a conformational change and the inhibition of TGase activity, whereas Mg-ATP is ineffective. The implication of these findings in regulating the intracellular and extracellular function of tTG is discussed.
منابع مشابه
TRPM7 Channel Is Regulated by Magnesium Nucleotides via its Kinase Domain
TRPM7 is a Ca(2+)- and Mg(2+)-permeable cation channel that also contains a protein kinase domain. While there is general consensus that the channel is inhibited by free intracellular Mg(2+), the functional roles of intracellular levels of Mg.ATP and the kinase domain in regulating TRPM7 channel activity have been discussed controversially. To obtain insight into these issues, we have determine...
متن کاملIdentification of a functionally important negatively charged residue within the second catalytic site of the SUR1 nucleotide-binding domains.
The ATP-sensitive K+ channel (KATP channel) couples glucose metabolism to insulin secretion in pancreatic beta-cells. It is comprised of sulfonylurea receptor (SUR)-1 and Kir6.2 proteins. Binding of Mg nucleotides to the nucleotide-binding domains (NBDs) of SUR1 stimulates channel opening and leads to membrane hyperpolarization and inhibition of insulin secretion. To elucidate the structural ba...
متن کاملIdentification of Amino Acids Involve in Indium Binding To Serum Human Apo-Transferrin
Indium is a heavy metal belonging to group IIIa. It is used as a radioimaging and chemotherapeutic agent in diagnosis and also in the treatment of cancers. It is believed that indium may interfere with iron metabolism and reduce cell growth in cancer tissue. The present report was established to study the binding of iron and indium to apo-transferrin (apo-tf) and to identify amino acids involv...
متن کاملCharacteristics Determination of Rheb Gene and Protein in Raini Cashmere Goat
The aim of the present study was todeterminecharacteristics of Rheb gene and protein in Raini Cashmere goat. Comparative analyses of the nucleotide sequences were performed. Open reading frames (ORFs), theoretical molecular weights of deduced polypeptides, the protein isoelectric point, protein characteristics and three-dimensional structures was predicted using online standard softwares. The f...
متن کاملStructural basis for the coordinated regulation of transglutaminase 3 by guanine nucleotides and calcium/magnesium.
Transglutaminase 3 (TGase 3) is a member of a family of Ca2+-dependent enzymes that catalyze covalent cross-linking reactions between proteins or peptides. TGase 3 isoform is widely expressed and is important for effective epithelial barrier formation in the assembly of the cell envelope. Among the nine TGase enzyme isoforms known in the human genome, only TGase 2 is known to bind and hydrolyze...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 3 شماره
صفحات -
تاریخ انتشار 1998